Abstract

The motivation for the results presented here comes from the following two known theorems which concern countable, recursively saturated models of Peano arithmetic.(1) if is a countable, recursively saturated model of PA, then for each infinite cardinal κ there is a resplendent which has cardinality κ. (See Theorem 10 of [1].)(2) if is a countable, recursively saturated model of PA, then is generated by a set of indiscernibles. (See [4].)It will be shown here that (1) and (2) can be amalgamated into a common generalization.(3) if is a countable, recursively saturated model of PA, then for each infinite cardinal κ there is a resplendent which has cardinality κ and which is generated by a set of indiscernibles.By way of contrast we will also get recursively saturated models of PA which fail to be resplendent and yet are generated by indiscernibles.(4) if is a countable, recursively saturated model of PA, then for each uncountable cardinal κ there is a κ-like recursively saturated generated by a set of indiscernibles.None of (1), (2) or (3) is stated in its most general form. We will make some comments concerning their generalizations. From now on let us fix a finite language L; all structures considered are infinite L-structures unless otherwise indicated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.