Abstract

AbstractThis investigation concerns itself with the computer implementation of the dynamic formulation of thin laminated composite plates consisting of layers of orthotropic laminae that undergo large arbitrary rigid body displacements and small elastic deformations. A finite element preprocessor computer program is developed to automatically generate the invariants of the laminae, which may have arbitrary orientations. The laminae invariants are then used to obtain the invariants of the elements and the composite laminated plate. The consistent and lumped mass formulations of the invariants of motion of composite plates are compared and it is concluded that the two methods are comparable, if a fine enough finite element mesh is used. The structure of the dynamic equations of motion, based on the formulation presented in Part I of this paper, is examined. Non‐linear centrifugal and Coriolis forces arising as the result of the finite rotations of the laminae are defined, and the solution schemes of the resulting non‐linear differential equations of motion are discussed. Numerical examples illustrating the differences between homogeneous isotropic and laminated composite plates are presented. An RSSR (Revolute‐Spherical‐Spherical‐Revolute) mechanism is used in the numerical examples, with the coupler modelled as a laminated plate flexible body. It is found that the inertia of the plate contributed greatly to the transverse deformation. The effects of laminae orientation is also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.