Abstract

The beneficial combination of micro- and nano-patterned surfaces with magneto-optical materials was investigated over the recent years. Due to their resonant behavior, these structures are commonly used to enhance the non-reciprocal magneto-optical effects. In this paper, a novel kind of magneto-optical intensity effect is enhanced with an all-dielectric grating patterned on a magnetic nanocomposite layer. This nanocomposite is made of CoFe2O4 nanoparticles (NPs) embedded in a silica matrix by sol–gel technique. The demonstrated magneto-optical intensity effect is reciprocal and it is observed with transverse magnetic field, for both polarization (TE and TM) and small angles of incidence. Such effect is not explained by the classical appearance of off-diagonal elements in the permittivity tensor of the magneto-optical material under magnetic field. However, it can be attributed to a magneto-induced reciprocal modification of the diagonal elements. Furthermore, this effect strongly depends on the NPs orientation inside the magneto-optical film and can originate from the magnetostrictive property of the magnetic CoFe2O4 NPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call