Abstract

The bulk electronic properties of compensated topological insulators are strongly affected by the self-organized formation of charge puddles at low temperature, but their response in the microwave frequency range is little studied. We employed broadband impedance spectroscopy up to 5 GHz to address the ac transport properties of well-compensated BiSbTeSe2, where charge puddles are known to form as metallic entities embedded in an insulating host. It turns out that the average puddle size sets the characteristic frequency cut-off in the GHz range, across which the insulating dc behavior is separated from a metal-like high-frequency response of delocalized carriers within the puddles. The cut-off frequency is found to be controlled by a magnetic field, giving rise to a large positive magneto-conductivity observable only in the GHz range. This curious phenomenon is driven by the Zeeman energy which affects the local band filling in the disordered potential landscape to enhance the puddle size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.