Abstract

Carbonization by rapid thermal annealing (RTA) of precursor films structured by a brush block copolymer-mediated self-assembly enabled the preparation of large-pore (40 nm) ordered mesoporous carbon (MPC)-based micro-supercapacitors within minutes. The large pore size of the fabricated films facilitates both rapid electrolyte diffusion for carbon-based electric double-layer capacitors and conformal deposition of V2O5 without pore blockage for pseudocapacitors. The pores were templated using bottlebrush block copolymers (BBCPs) via cooperative assembly of phenol-formaldehyde resin to produce microphase-segregated carbon precursor films on a variety of substrates. Ultrafast RTA processing (∼50 °C/s) at elevated temperatures (up to 1000 °C) then generated stable, conductive, turbostratic MPC films, resolving a significant bottleneck in rapid fabrication. MPC prepared on stainless steel at 900 °C demonstrated exceptionally high areal and volumetric capacitances of 6.3 mF/cm2 and 126 F/cm3 (at 0.8 mA/cm2 using 6 M KOH as the electrolyte), respectively, and 91% capacitance retention after 10,000 galvanostatic charge/discharge cycles. Post-RTA conformal V2O5 deposition yielded pseudocapacitors with 10-fold increase in energy density (20 μW h cm-2 μm-1) without adversely affecting the high power density (450 μW cm-2 μm-1). The use of RTA coupled with BBCP templating opens avenues for scalable, rapid fabrication of high-performance carbon-based micro-pseudocapacitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.