Abstract

Within the context of plane stress assumptions and approximations, an analytical solution is derived for the finite deformation of a traction-free elliptical hole in an infinite plate with tensile tractions at infinity. The plate is composed of a non-work-hardening material satisfying the Tresca yield condition under a deformation theory of plasticity. The governing partial differential equations are parabolic in nature and consequently have a single family of mathematical characteristics or slip lines associated with them. Each particle of mass follows a rectilinear path in the plane defined by its slip line which emanates orthogonally from the elliptical hole. By assuming a constant speed for each particle in the plane, a state of plane equilibrium is realized. The originally elliptical hole expands in the shape of an oval which is a parallel curve to the original ellipse. The slip lines remain orthogonal to the evolving oval hole as a necessary condition for a traction-free interior boundary. This solution also satisfies the material stability criterion that the rate of plastic work be positive throughout the entire body for all time. As this solution has some features associated with large deformation crack problems at elevated temperatures, possible applications include secondary or steady-state creep.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.