Abstract

Spectrophotometry of 75 large PNe with Shklovsky radii greater than 0.15 pc is presented and used to calculate nebular parameters and compositions, stellar Zanstra temperatures and luminosities, and core masses. Nine new Peimbert type I nebulae are identified. About 40 percent of the stars that are on cooling tracks are above 0.7 solar mass, and over 15 percent are above 0.8 solar mass. The large planetaries demonstrate a clear positive correlation between nitrogen enrichment and core mass. N/O is anticorrelated with O/H. The radii of the nebulae whose stars lie along specific cooling tracks increase monotonically with decreasing central star temperature. For a given central temperature, the nebular radii also increase with increasing core mass, showing that in this part of the log L-log T plane the higher mass cores evolve more slowly in agreement with theoretical prediction. However, theoretical evolutionary rates for the large nebulae stars appear to be much too slow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.