Abstract

The electrical properties and polarization fatigue of [001]-oriented 6Pb(Sc1/2Nb1/2)O3-70Pb(Mg1/3Nb2/3)O3-24PbTiO3 (6PSN-70PMN-24PT) crystals were investigated. Compared with binary Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) crystals, the ternary 6PSN-70PMN-24PT crystal showed a higher rhombohedral → tetragonal transition temperature (TR-T = 120°C) and a larger coercive field (Ec = 4 kV/cm). It was found that the piezoelectric constant (d33 ≈ 1200 pC/N) and electromechanical coupling coefficient (kt ≈ 61%) were weakly dependent on the thermal annealing temperature (Ta), maintaining over 90% of the original value at Ta < 120°C, indicating excellent piezoelectric thermal stability. Electric fatigue measurements showed that the ternary 6PSN-70PMN-24PT crystal exhibited slight fatigue characteristics below 105 bipolar cycles, while the binary PMN-PT crystal exhibited sudden polarization degradation when the cycle numbers were above 102 cycles. The improved fatigue stability for 6PSN-70PMN-24PT crystals was attributed to the large coercive field. The physical mechanisms of the enhanced coercive field and high transition temperature were discussed based on repulsive energy and polar domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call