Abstract

Organic-inorganic hybrid metal halides with structural flexibility and solution processability have been widely investigated for different application scenarios. However, the effective construction of phase-transition materials with a high phase-transition temperature (Ttr) for potential practical applications remains a great challenge, and reports on the regulation of Ttr with significant enhancement have been rare. In this manuscript, we have realized a large Ttr increase of 148 K in a layered hybrid lead iodide crystal (4-FTMBA)4Pb3I10 (4-FTMBA = 4-fluoro-N,N,N-trimethylbenzenaminium) by the H/F substitution strategy. Compared to the parent (TMBA)4Pb3I10 (TMBA = N,N,N-trimethylbenzenaminium), H/F substitution preserves the structural framework and crystal symmetry in (4-FTMBA)4Pb3I10. The introduction of heavier fluorine will significantly increase the motion barrier for the order-disorder transition, resulting in the remarkably improved Ttr. Temperature-dependent crystal structures, Raman spectra, and dielectric analyses well support the phase-transition behavior. In addition, evident thermochromism with a tunable direct band gap in (4-FTMBA)4Pb3I10 has been observed using UV-vis spectra. To the best of our knowledge, the achieved Ttr enhancement of 148 K by H/F substitution is the highest among the organic-inorganic hybrid lead halide phase-transition materials. This finding would greatly inspire the rational design of functional materials with high performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.