Abstract

We compare super-Planckian thermal radiation between phonon-polaritonic media and hyperbolic metamaterials. In particular, we determine the penetration depth of thermal photons inside the absorbing medium for three different structures: two semi-infinite phonon-polaritonic media supporting surface modes, two multilayer hyperbolic metamaterials and two nanowire hyperbolic metamaterials. We show that for hyperbolic modes the penetration depth can be orders of magnitude larger than for surface modes suggesting that hyperbolic materials are much more preferable for near-field thermophotovoltaic applications than pure phonon-polaritonic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.