Abstract

Using a new parallel computing technique, we have run the largest cosmic string simulations ever performed. Our results confirm the existence of a long transient period where a nonscaling distribution of small loops is produced at lengths depending on the initial correlation scale. As time passes, this initial population gives way to the true scaling regime, where loops of size approximately equal to one-twentieth the horizon distance become a significant component. We observe similar behavior in matter and radiation eras, as well as in flat space. In the matter era, the scaling population of large loops becomes the dominant component; we expect this to eventually happen in the other eras as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.