Abstract

We discuss recent results in which a normal subgroup of finite index (or with finite rank of the quotient, or some other well-behaving parameter) satisfying an outer (multilinear) commutator law is transformed into a large characteristic subgroup satisfying the same law. Here »large» means that the index (or the corresponding parameter) of the resulting characteristic subgroup is finite and bounded in terms of the index (or the corresponding parameter) of the original normal subgroup. Similar results also hold for ideals in arbitrary algebras over a field and, moreover, for a wider class of algebraic systems defined in terms of multioperator groups. We also give examples of applications of these results in various situations involving almost soluble groups, in particular, in the study of groups with almost fixed-point-free automorphisms. © 2009 World Scientific Publishing Co. Pte. Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.