Abstract

The electric control of magnetic anisotropy has important applications for nonvolatile memory and information processing. By first-principles calculations, we show a large nonvolatile control of magnetic anisotropy in ferromagnetic/ferroelectric CoPt/ZnO interface. Using the switched electric polarization of ZnO, the density-of-states and magnetic anisotropy at the CoPt surface show a large change. Due to a strong Co/Pt orbitals hybridization and a large spin-orbit coupling, a large control of magnetic anisotropy was found. We experimentally measured the change of effective anisotropy by tunneling resistance measurements in CoPt/Mg-doped ZnO/Co junctions. Additionally, we corroborate the origin of the control of magnetic anisotropy by observations on tunneling anisotropic magnetoresistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call