Abstract

We report on nonlocal transport in large-scale epitaxial graphene on silicon carbide under an applied external magnetic field. The nonlocality is related to the emergence of the quantum Hall regime and persists up to the millimeter scale. The nonlocal resistance reaches values comparable to the local (Hall and longitudinal) resistances. At moderate magnetic fields, it is almost independent on the in-plane component of the magnetic field, which suggests that spin currents are not at play. The nonlocality cannot be explained by thermoelectric effects without assuming extraordinary large Nernst and Ettingshausen coefficients. A model based on counterpropagating edge states backscattered by the bulk reproduces quite well the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.