Abstract

Measurements of angular distributions of K-shell electrons photoejected from molecular nitrogen are reported which reveal large deviations at relatively low photon energies (Planck's omega < or = 500 eV) from emission patterns anticipated from the dipole approximation to interactions between radiation and matter. A concomitant theoretical analysis incorporating the effects of electromagnetic retardation attributes the observed large nondipole behaviors in N2 to bond-length-dependent terms in the E1 [multiply sign in circle] (E2,M1) photoelectron emission amplitudes which are indicative of a potentially universal nondipole behavior in molecular photoionization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call