Abstract

Manganese oxides are an important sink for Ni in the ocean. To explore the potential of Ni stable isotopes as a geochemical tracer, we conducted two types of sorption reactions between Ni and hexagonal birnessite in 0.05 M NaNO3 media: one where we varied pH from 5 to 8 (constant initial Ni concentration = 170 μmol/L), and a second where we varied the initial dissolved Ni concentration from 17 to 426 μmol/L (constant pH = 7.7). Isotopic measurements were made on both the solid phase and the supernatant solutions to determine the Ni isotope fractionation factors (∆60/58Nimin-aq = δ60/58Nimin − δ60/58Niaq) between the mineral and aqueous phases. Nickel extended X-ray absorption fine structure (EXAFS) spectroscopy showed Ni in two distinct bonding environments: one where Ni atoms incorporate into the MnO2 sheet and a second where Ni atoms associate with the mineral surface sharing oxygens with 3 Mn tetrahedra (TCS, triple corner sharing). As pH and net negative surface charge increase, the coordination of Ni shifts to higher proportions of incorporation. The number of structural vacancies in birnessite, which are locations for TCS coordination of Ni, are controlled by pH and increase with decreasing pH. These vacancies are preferentially occupied by lighter Ni isotopes leading to fractionation factors, ∆60/58Nimin-aq, ranging from −2.76‰ (lowest TCS) to −3.35‰ (maximum TCS). These Ni isotopic fractionation factors are among the largest observed in natural geological and biological materials to date. Our findings reveal a relationship between Ni coordination environment and pH that may ultimately be used as an isotopic geochemical tracer of past ocean conditions. However, the results are inconsistent with current isotopic fractionation factors for marine ferromanganese deposits relative to seawater and point to unaddressed processes that modify Ni isotopic fractionation for ferromanganese deposits. Further research is needed to develop Ni as an isotopic tracer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.