Abstract

An oleic acid-coated Fe3O4 nanocrystal self-assembled film was fabricated via drop casting of colloidal particles on a SiO2/Si substrate. The film exhibited bifurcation of the zero-field-cooled and field-cooled magnetizations around 250 K. The nonlinear current-voltage (I-V) characteristics between the source and drain electrodes in both zero and non-zero magnetic fields (H) were observed above and below the bifurcation temperature. A large negative magnetoresistance (MR ≈ -60%) was achieved at 200 K and H = 1 T. Even at 295 K and 0.2 T, the negative MR (∼ -50%) persisted. A Fowler-Nordheim plot and power-law scaling of the I-V characteristics revealed that the current flows through two-dimensional (2D) percolated electron tunneling paths. The enlargement of MR can be attributed to spin-dependent electron tunneling between magnetically coupled Fe3O4 nanocrystals self-assembled in 2D ordered arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.