Abstract

The analytical expression for the complex amplitude of light reflected from a wedge-shaped thin film is derived. For plane wave incidence, a simple ray tracing approach is used to calculate Goos-Hanchen (GH) shifts; and for non-plane wave incidence, for example, a Gaussian beam, the angular spectrum approach of plane wave is used in simulation. The two approaches predict that a wedge-shaped thin film can produce large negative longitudinal GH shifts. Although the reflectivity is small near the condition of resonance, the large negative GH shifts can be more easily detected in comparison with the shift from a plane-parallel film in vacuum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call