Abstract

Fluid in the mammalian endolymphatic sac (ES) is connected to the endolymph in the cochlea and the vestibule. Since the dominant ion in the ES is Na(+), it has been postulated that Na(+) transport is essential for regulating the endolymph pressure. This study focused on the cellular mechanism of Na(+) transport in ES epithelial cells. To evaluate the Na(+) transport capability of the ES epithelial cells, changes in intracellular Na(+) concentration ([Na(+)](i)) of individual ES cells were measured with sodium-binding benzofurzan isophthalate in a freshly dissected ES sheet and in dissociated ES cells in response to either the K(+)-free or ouabain-containing solution. Analysis of the [Na(+)](i) changes by the Na(+) load and mitochondrial staining with rhodamine 123 showed that the ES cells were classified into two groups; one exhibited an intensive [Na(+)](i) increase, higher Na(+), K(+)-ATPase activity, and intensive mitochondrial staining (mitochondria-rich cells), and the other exhibited a moderate [Na(+)](i) increase, lower Na(+), K(+)-ATPase activity, and moderate mitochondrial staining (filament-rich cells). These results suggest that mitochondria-rich ES epithelial cells (ca. 30% of ES cells) endowed with high Na(+) permeability and Na(+), K(+)-ATPase activity potentially contribute to the transport of Na(+) outside of the endolymphatic sac.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.