Abstract
We study the large-N limit of the Segal–Bargmann transform on SN−1(N), the (N−1)-dimensional sphere of radius N, as a unitary map from the space of square-integrable functions with respect to the normalized spherical measure onto the space of holomorphic square-integrable functions with respect to a certain measure on the quadric. In particular, we give an explicit formulation and describe the geometric models for the limit of the domain, the limit of the range, and the limit of the transform when N tends to infinity. We show that the limiting transform is still a unitary map from the limiting domain onto the limiting range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.