Abstract

For a pair of coupled rectangular random matrices we consider the squared singular values of their product, which form a determinantal point process. We show that the limiting mean distribution of these squared singular values is described by the second component of the solution to a vector equilibrium problem. This vector equilibrium problem is defined for three measures with an upper constraint on the first measure and an external field on the second measure. We carry out the steepest descent analysis for a 4 $\times$ 4 matrix-valued Riemann-Hilbert problem, which characterizes the correlation kernel and is related to mixed type multiple orthogonal polynomials associated with the modified Bessel functions. A careful study of the vector equilibrium problem, combined with this asymptotic analysis, ultimately leads to the aforementioned convergence result for the limiting mean distribution, an explicit form of the associated spectral curve, as well as local Sine, Meijer-G and Airy universality results for the squared singular values considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.