Abstract
Large modulations of up to 2 orders of magnitude are observed in the Raman intensity of pristine, suspended, quasimetallic, single-walled carbon nanotubes in response to applied gate potentials. No change in the resonance condition is observed, and all Raman bands exhibit the same changes in intensity, regardless of phonon energy or laser excitation energy. The effect is not observed in semiconducting nanotubes. The electronic energy gaps correlate with the drop in the Raman intensity, and the recently observed Mott insulating behavior is suggested as a possible explanation for this effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.