Abstract

Background:There is a need to develop robust and clinically applicable gene expression signatures. Hypoxia is a key factor promoting solid tumour progression and resistance to therapy; a hypoxia signature has the potential to be not only prognostic but also to predict benefit from particular interventions.Methods:An approach for deriving signatures that combine knowledge of gene function and analysis of in vivo co-expression patterns was used to define a common hypoxia signature from three head and neck and five breast cancer studies. Previously validated hypoxia-regulated genes (seeds) were used to generate hypoxia co-expression cancer networks.Results:A common hypoxia signature, or metagene, was derived by selecting genes that were consistently co-expressed with the hypoxia seeds in multiple cancers. This was highly enriched for hypoxia-regulated pathways, and prognostic in multivariate analyses. Genes with the highest connectivity were also the most prognostic, and a reduced metagene consisting of a small number of top-ranked genes, including VEGFA, SLC2A1 and PGAM1, outperformed both a larger signature and reported signatures in independent data sets of head and neck, breast and lung cancers.Conclusion:Combined knowledge of multiple genes' function from in vitro experiments together with meta-analysis of multiple cancers can deliver compact and robust signatures suitable for clinical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call