Abstract
In the literature, it was reported that the chaotic artificial neural network model with sinusoidal activation functions possesses a large memory capacity as well as a remarkable ability of retrieving the stored patterns, better than the conventional chaotic model with only monotonic activation functions such as sigmoidal functions. This paper, from the viewpoint of the anti-integrable limit, elucidates the mechanism inducing the superiority of the model with periodic activation functions that includes sinusoidal functions. Particularly, by virtue of the anti-integrable limit technique, this paper shows that any finite-dimensional neural network model with periodic activation functions and properly selected parameters has much more abundant chaotic dynamics that truly determine the model's memory capacity and pattern-retrieval ability. To some extent, this paper mathematically and numerically demonstrates that an appropriate choice of the activation functions and control scheme can lead to a large memory capacity and better pattern-retrieval ability of the artificial neural network models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.