Abstract

The problem of feature selection is a difficult combinatorial task in machine learning and of high practical relevance. In this paper, we consider feature selection method for multimodally distributed data, and present a large margin feature weighting method for k-nearest neighbor (kNN) classifiers. The method learns the feature weighting factors by minimizing a cost function, which aims at separating different classes by large local margins and pulling closer together points from the same class, based on using as few features as possible. The consequent optimization problem can be efficiently solved by linear programming. Finally, the proposed approach is assessed through a series of experiments with UCI and microarray data sets, as well as a more specific and challenging task, namely, radar high-resolution range profiles (HRRP) automatic target recognition (ATR). The experimental results demonstrate the effectiveness of the proposed algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.