Abstract

Monotonic classification plays an important role in the field of decision analysis, where decision values are ordered and the samples with better feature values should not be classified into a worse class. The monotonic classification tasks seem conceptually simple, but difficult to utilize and explain the order structure in practice. In this work, we discuss the issue of feature selection under the monotonicity constraint based on the principle of large margin. By introducing the monotonicity constraint into existing margin based feature selection algorithms, we design two new evaluation algorithms for monotonic classification. The proposed algorithms are tested with some artificial and real data sets, and the experimental results show its effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.