Abstract

Resonant cascaded nonlinearity (RCN) induced by optical parametric amplification (OPA) in a chirped quasi-phase-matching chip can be applied to control the group velocity of ultrafast lasers. However, the group delay produced in a single-stage OPA is limited to the pulse duration, and its sign cannot be altered. In this study, we propose a tandem RCN configuration with multiple OPA stages that can produce large-magnitude and sign-controllable group delays. The group delay produced in the multi-stage configuration is shown to be a linear superposition of each single-stage group delay. By virtue of the byproduct idler in the OPA process, the signal-group delay can be altered from positive to negative (and vice versa) with the same chip structure and pump condition. In the numerical simulation with two OPA stages, both a positive and negative group delay of six-fold pulse duration were achieved for 100-fs pulses at 1550 nm. A much larger group delay can be achieved by increasing the number of OPA stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.