Abstract
Gas sensors with high sensitivity and high selectivity are required in practical applications to distinguish between target molecules in the detection of volatile organic compounds, real-time security alerts, and clinical diagnostics. Semiconducting tin oxide (SnO2) is highly regarded as a gas-sensing material due to its exceptional responsiveness to changes in gaseous environments and outstanding chemical stability. Herein, we successfully synthesized a large-lateral-area SnO2 nanosheet with a loose structure as a gas sensing material by a one-step facile aqueous solution process without a surfactant or template. The SnO2 sensor exhibited a remarkable sensitivity (Ra/Rg = 1.33) at 40 ppt for acetone, with a theoretical limit of detection of 1.37 ppt, which is the lowest among metal oxide semiconductor-based gas sensors. The anti-interference ability of acetone was higher than those of pristine SnO2 and commercial sensors. These sensors also demonstrated perfect reproducibility and long-term stability of 100 days. The ultrasensitive response of the SnO2 nanosheets toward acetone was attributed to the specific loose large lateral area structure, small grain size, and metastable (101) crystal facets. Considering these advantages, SnO2 nanosheets with larger lateral area sensors have great potential for the detection and monitoring of acetone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.