Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent health challenge faced by countries worldwide. In this study, we propose a novel large language multimodal models (LLMMs) framework incorporating multimodal data from clinical notes and laboratory results for diabetes risk prediction. We collected five years of electronic health records (EHRs) dating from 2017 to 2021 from a Taiwan hospital database. This dataset included 1,420,596 clinical notes, 387,392 laboratory results, and more than 1505 laboratory test items. Our method combined a text embedding encoder and multi-head attention layer to learn laboratory values, and utilized a deep neural network (DNN) module to merge blood features with chronic disease semantics into a latent space. In our experiments, we observed that integrating clinical notes with predictions based on textual laboratory values significantly enhanced the predictive capability of the unimodal model in the early detection of T2DM. Moreover, we achieved an area greater than 0.70 under the receiver operating characteristic curve (AUC) for new-onset T2DM prediction, demonstrating the effectiveness of leveraging textual laboratory data for training and inference in LLMs and improving the accuracy of new-onset diabetes prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.