Abstract

Large language models (LLMs) have proven capable of assisting with many aspects of organizational decision making, such as helping to collect information from databases and helping to brainstorm possible courses of action ahead of making a choice. We propose that broad adoption of these technologies introduces new questions in the study of decision support systems, which assist people with complex and open-ended choices in business. Where traditional study of decision support has focused on bespoke tools to solve narrow problems in specific domains, LLMs offer a general-purpose decision support technology which can be applied in many contexts. To organize the wealth of new questions which result from this shift, we turn to a classic framework from Herbert Simon, which proposes that decision making requires collecting evidence, considering alternatives, and finally making a choice. Working from Simon’s framework, we describe how LLMs introduce new questions at each stage of this decision-making process. We then group new questions into three overarching themes for future research, centered on how LLMs will change individual decision making, how LLMs will change organizational decision making, and how to design new decision support technologies which make use of the new capabilities of LLMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.