Abstract

Newly powerful large language models have burst onto the scene, with applications across a wide range of functions. We can now expect to encounter their outputs at rapidly increasing volumes and frequencies. Some commentators claim that large language models are bullshitting, generating convincing output without regard for the truth. If correct, that would make large language models distinctively dangerous discourse participants. Bullshitters not only undermine the norm of truthfulness (by saying false things) but the normative status of truth itself (by treating it as entirely irrelevant). So, do large language models really bullshit? I argue that they can, in the sense of issuing propositional content in response to fact-seeking prompts, without having first assessed that content for truth or falsity. However, I further argue that they need not bullshit, given appropriate guardrails. So, just as with human speakers, the propensity for a large language model to bullshit depends on its own particular make-up.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.