Abstract

Using a prototypical nanoparticle-molecule assembly, namely alkanedithiol-linked gold nanoparticle films, we observe hallmark signatures of the Kondo effect in conductance vs. voltage as well as temperature measurements. Its contribution to temperature dependence of conductance is much larger than those from all other temperature-dependant effects up to 300 K by >20-fold - much larger than previous reports of the Kondo effect using other platforms. We find that previous models of the Kondo effect describe our data even in this regime. Given the synthetic control available over nanoparticle properties such as surface area, shape, and chemical composition, our work points to combining flexibility afforded by molecule + nanoparticle assemblies as a powerful way to generate materials exhibiting strong spin-electron interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.