Abstract
When a transparent material is irradiated by focused femtosecond laser pulses, various types of structural modification can occur inside the material. Recently, it has been reported that asymmetric structures, which are composed of two regions with positive and negative refractive index changes (Δn), can be inscribed by irradiation of multiple femtosecond laser pulses at high (∼MHz) repetition rates. Interestingly, the amount of positive Δn in this type of modification is larger than those in conventional structural modifications by one order of magnitude. However, the mechanisms underlying such modifications are still unclear. In this paper, we describe that similar asymmetric structures can be inscribed by using femtosecond laser pulses at a low repetition rate. Then, we examine the formation and spectroscopic characteristics of the asymmetric structures. The observation of the processed areas reveals that the asymmetric structures are formed after the movement of voids. Furthermore, micro-Raman spectroscopy suggests a large increase of three-membered ring structures in the region with positive Δn, which may account for the large Δn.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.