Abstract

Phonon anharmonicity plays a crucial role in determining the stability and vibrational properties of high-pressure hydrides. Furthermore, strong anharmonicity can render phonon quasiparticle picture obsolete questioning standard approaches for modeling superconductivity in these material systems. In this work, we show the effects of non-Lorentzian phonon lineshapes on the superconductivity of high-pressure solid hydrogen. We calculate the superconducting critical temperature TC ab initio considering the full phonon spectral function and show that it overall enhances the TC estimate. The anharmonicity-induced phonon softening exhibited in spectral functions increases the estimate of the critical temperature, while the broadening of phonon lines due to phonon-phonon interaction decreases it. Our calculations also reveal that superconductivity emerges in hydrogen in the Cmca − 12 molecular phase VI at pressures between 450 and 500 GPa and explain the disagreement between the previous theoretical results and experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.