Abstract
This paper describes experimental studies of heat transfer due to the oscillations of gas columns that are spontaneously induced in a tube with steep temperature gradients. The tube (∼3 m in length) is closed at both ends and bent into U-shaped form at the midpoint. The temperature distribution along the tube is step-functional and symmetrical with respect to the midpoint. The warm part (closed-end sides) is maintained at room temperature and the cold one is immersed in liquid helium (4.2 K). The heat transported from the warm part to the cold is estimated from the evaporation rate of liquid helium. The heat flux by the oscillations is proportional to the square of the pressure amplitude, and the effective heat conductivity can be several orders of magnitude larger than the molecular heat conductivity of gas. The experimental results are compared with the theory of the second-order heat flux proposed by Rott and are found to be in satisfactory agreement with this.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.