Abstract

The high Curie temperatures and compatible lattice structure with conventional semiconductors for half-metallic Co2FeZ and Co2CrZ (Z=Al, Si, Ga, Ge) inspired us to design new quaternary Heusler half-metallic ferromagnets CoFeCrZ. Our first-principles calculations show that, within generalized gradient approximation for the electronic exchange–correlation functional, both CoFeCrGa and CoFeCrGe are nearly half-metals, while both CoFeCrAl and CoFeCrSi exhibit excellent half-metallic ferromagnetism with the large half-metallic gaps of 0.16 and 0.28eV, respectively. The half-metallicity of CoFeCrAl and CoFeCrSi is robust against the lattice compression (up to 7% and 4%, respectively). We also reveal that the half-metallicity is lost for both CoFeCrAl and CoFeCrGa but retentive for both CoFeCrSi and CoFeCrGe when the Coulomb interactions are considered. In addition, both CoFe- and CrSi-terminated (001) surfaces with and without antisite defects lose the bulk half-metallicity in CoFeCrSi.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.