Abstract

In the minimal supersymmetric extension to the standard model, a nonzero lepton number violating coupling lambda(111);(') predicts both neutrinoless double-beta-decay and resonant single slepton production at the LHC. We show that, in this case, if neutrinoless double beta decay is discovered in the next generation of experiments, there exist good prospects to observe single slepton production at the LHC. Neutrinoless double beta decay could otherwise result from a different source (such as a nonzero Majorana neutrino mass). Resonant single slepton production at the LHC can therefore discriminate between the lambda(111);(') neutrinoless double-beta-decay mechanism and others.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call