Abstract
This paper investigates the slow light propagation in silicon on insulator wide slot photonic crystal waveguides (PCWs). Two design schemes are presented, relying on the dispersion engineering of hole lattice and slot, respectively. Mode patterns and band diagrams are calculated by 3D-plane wave expansion method. Then, coupling and slow light propagations are modeled using finite difference time domain method in a full Mach-Zehnder interferometer (MZI). Results show high amplitudes interference fringes and high coupling efficiencies. Fabrication and measurement of devices lead to slow light propagation with group indices above 50, while multiple scattering and localized modes near the band edge also observed. This study provides insights for losses in hollow core slot high group index waveguides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.