Abstract

We present 7 mm observations of the dusty disk surrounding the 10 Myr old pre-main-sequence star CQ Tauri obtained at the Very Large Array with 0.8 arcsec resolution and 0.1 mJy rms sensitivity. These observations resolve the 7 mm emission in approximately the north-south direction, confirming previous results obtained with lower resolution. We use a two-layer flared disk model to interpret the observed fluxes from 7 mm to 1.3 mm together with the resolved 7 mm structure. We find that the disk radius is constrained to the range 100 to 300 AU, depending on the steepness of the disk surface density distribution. The power law index of the dust opacity coefficient, β, is constrained to be 0.5 to 0.7. Since the models indicate that the disk is optically thin at millimeter wavelengths for radii greater than 8 AU, the contribution of an optically thick region to the emission is less than 10%. This implies that high optical depth or complex disk geometry cannot be the cause of the observed shallow millimeter spectral index. Instead, the new analysis supports the earlier suggestion that dust particles in the disk have grown to sizes as large as a few centimeters. The dust in the CQ Tauri system appears to be evolved much like that in the TW Hydra system, a well-studied pre-main-sequence star of similar age and lower mass. The survival of gas-rich disks with incomplete grain evolution at such old ages deserves further investigations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.