Abstract

We investigate Sn incorporation effects on the growth characteristics of Ge-rich Ge1−xSnx (x < 0.02) on SiO2 crystallized by pulsed laser annealing (PLA) in air and water. Despite the very low Sn content of 2%, Sn atoms within the GeSn layers play a role in preventing ablation and aggregation of the layers during these PLA. Raman and electron backscatter diffraction measurements demonstrate achievement of large-grain (∼800 nmϕ) growth of Ge0.98Sn0.02 polycrystals by using PLA in water. These polycrystals also show a tensile-strain of ∼0.68%. This result opens up the possibility for developing GeSn-based devices fabricated on flexible substrates as well as Si platforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.