Abstract

Gynogenesis is a process in which the embryo genome originates exclusively from female origin, following embryogenesis stimulation by a male gamete. In contrast, androgenesis is the development of embryos that contain only the male nuclear genetic background. Both phenomena are of great interest in plant breeding as haploidization is an efficient tool to reduce the length of breeding schemes to create varieties. Although few inducer lines have been described, the genetic control of these phenomena is poorly understood. We developed genetic screens to identify mutations that would induce gynogenesis or androgenesis in Arabidopsis thaliana. The ability of mutant pollen to induce either gynogenesis or androgenesis was tested by crossing mutagenized plants as males. Seedlings from these crosses were screened with recessive phenotypic markers, one genetically controlled by the female genome and another by the male genome. Positive and negative controls confirmed the unambiguous detection of both gynogenesis and androgenesis events. This strategy was applied to 1,666 EMS-mutagenised lines and 47 distant Arabidopsis strains. While an internal control suggested that the mutagenesis reached saturation, no gynogenesis or androgenesis inducer was found. However, spontaneous gynogenesis was observed at a frequency of 1/10,800. Altogether, these results suggest that no simple EMS-induced mutation in the male genome is able to induce gynogenesis or androgenesis in Arabidopsis.

Highlights

  • In sexual reproduction, the fusion of the male and female haploid gametes leads to the formation of a diploid embryo

  • Positive and Negative Controls We first tested if the detection system described above is efficient to detect androgenesis and gynogenesis events, by using negative and positive controls

  • If a gyno/androgenesis event takes place, it should be detected via the expression of recessive markers, as the dominant GL1 and APT allele originating from the gem line would be eliminated

Read more

Summary

Introduction

The fusion of the male and female haploid gametes leads to the formation of a diploid embryo. Both parents contribute to the nuclear genome of the embryo. Gynogenesis leads to embryos that exclusively originate from the female genetic background, with no contribution of the male in the embryo’s genome, even if a male gamete is required to stimulate embryogenesis. This differs from another mode of reproduction, parthenogenesis, where embryogenesis occurs spontaneously, in absence of a male gamete. In situ androgenesis leads to the development of embryos that contain only the nuclear male genetic background, with

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.