Abstract
Do alanes Al(n)H(n+2) and gallanes Ga(n)H(n+2) satisfy the polyhedral skeletal electron pair theory (PSEPT)? Taking into account previous work on this question, this paper provides a convincing answer and proposes the reformulation of the (n + 1) electron pairs rule of Wade and Mingos (W-M) for such systems. Following recent studies of tetra-, penta-, hexa-, hepta-, octa-, and nonaalanes as well as valence-isoelectronic/related gallanes, in this paper we present an analysis of the hydrides of aluminum and gallium A(n)H(n+2) (A = Al, Ga and n = 7-9). The aim is still to examine the applicability of PSEPT, especially the W-M rule, to these clusters. Exploration of the total potential energy surfaces (PESs) of hepta-, octa-, and nonagallanes shows that the absolute minima have a nido-like polyhedron arrangement. Unlike the smaller Ga(n)H(n+2) (n = 4, 5, 6), it seems that the size of the cluster largely dictates its preferred geometry. Although none of them have closed (totally triangular) cages, these clusters exhibit significant compactness, comparable to borane double anions, B(n)H(n) (2-), which are the archetypes for the PSEPT theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.