Abstract

A large-format manufacturing process of electric heating floors for indoor heating was evaluated in this work using large-format high-density fiberboard as the substrate, carbon fiber paper as the electric heating element, and semi-cured melamine resin film as the bonding material to elevate its production efficiency. The semi-cured melamine resin film permeated the carbon fiber paper to form a glued structure via hot-pressing process, which improved the water resistance and insulation of the electric heating layer. The internal bonding strength of the floor reached 1.63 MPa with the enhanced waterproof properties. The temperature rise of both the electric heating floor and the assembled floors can reach 20.5 °C within 60 min under the voltage of 220 V. There was a small difference of approximately 2 °C in the ambient temperature between the heights of 0.6 m and 1.8 m above the running assembled electric heating floors. The power of the assembled 16 pieces of floors stabilized at 830 W after the continuous electrification for 12 h in this test condition, which demonstrated the comfortable and high-efficiency heating performance of the assembled electric heating floors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call