Abstract

NGC3516 in the low flux state shows a flat energy spectrum (photon index ∼1) and an intense narrow iron line. Such spectra are also observed in other Seyfert galaxies, and a broad bump structure around 6 keV above the 'flat' power-law spectrum has been interpreted as the gravitationally red-shifted iron line, disk reflection, or cold and/or warm absorbers. However, six years if BeppoSAX observations, including our latest three ones in 2001, clearly demonstrate that energy spectra above 20 keV always exhibit steep power-laws with photon indices ∼2, and the flux changes only by a factor of 2, while the soft X-ray flux by a factor of ∼10. From this fact, using BeppoSAX and ASCA data, we have concluded that the flat spectrum results from reprocessed, and partially covered power-laws with Γ∼1.8 by warm matter nearby the central source and a cold absorber moved in the line of sight, respectively, and that the broad iron line and disk reflection components are less significant than one ever thought. Thus, the long-term spectral variations can be considered by intervening absorbers rather than changes in the accretion rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call