Abstract
It is difficult in interferometric metrology to maintain high spatial resolution over a large field of view. Interferometric microscope measurements yield high resolution, but only over a small area. Other conventional interferometric systems can measure large areas, but they fail to provide the necessary spatial resolution. High spatial resolution over a large field-of-view (FOV) can be obtained by stitching together multiple high spatial resolution measurements of adjacent areas of a measured surface. The measurements can be fit together in a global sense, or by matching the piston and tilt over the overlap region. Care must be taken in the stitching process to make sure the measurements are precisely overlapped to minimize errors. The larger the overlap the easier it is to match data sets, but of course more data sets are required to get a given field of view. This paper shows that a 20 percent overlap gives a good trade off between having good repeatability and obtaining a large field of view with a minimum number of data sets. Typical measurement results are shown for stitching as many as 285 sub-regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Tools and Manufacture
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.