Abstract

(1-x)(Bi0.5Na0.5)0.94Ba0.06TiO3-xAgNbO3 lead-free piezoelectric ceramics (abbreviated as BNBT-100xAN) were prepared using the conventional solid-state sintering method. The effects of the introduction of AgNbO3 (AN) dopants for the dielectric and piezoelectric performances of BNBT-100xAN ceramics were systematically studied. The XRD patterns and Raman spectra demonstrated that AN as a modifier was successfully diffused into the BNBT-100xAN lattice and revealed a pseudo-cubic symmetry structure. All samples exhibited a dense surface morphology accompanied by the uniform distribution of elements. A large bipolar strain of ~0.501% and unipolar strain of ~0.481% corresponding to the normalized strain d33* of ~740 p.m./V were achieved for BNBT-1AN ceramic at 65 kV/cm field. The BNBT-4AN ceramic exhibited an excellent temperature-stable permittivity with the range from 59 to 380 °C and its dielectric loss was less than 0.02 between 97 °C and 329 °C. These results revealed that BNBT-100xAN ceramics were more hopeful candidates for actuators, strain sensors, and high-temperature capacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.