Abstract
(Pb,La)(Zr,Sn,Ti)O3 (PLZST) tetragonal antiferroeletric single crystals have been grown by conventional flux method. Phase structure, domain evolution, electric field-induced strain and energy storage properties of the as-grown PLZST crystals with [100] crystallographic orientation have been investigated systematically. A large electric field-induced strain up to 0.76% at 110 °C and a giant memory strain of 0.51% at 100 °C have been realized in the PLZST crystals. This field-induced strain has a nonlinear relationship with the square polarization, which simultaneously stems from the quadratic and higher order electrostrictions. Furthermore, a good thermal stability of energy storage performance with the recoverable energy variation less than 5% in a wide temperature window (105 °C) has been achieved. The combination of high strain and good thermal stability of energy storage wound make the PLZST crystals one of the most important candidates for high temperature electromechanical coupling and high reliability energy-storage devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.