Abstract

We study the large exceedance probabilities and large exceedance paths of the recursive sequence $V_{n}=M_{n}V_{n-1}+Q_{n}$, where $\{(M_{n},Q_{n})\}$ is an i.i.d. sequence, and $M_{1}$ is a $d\times d$ random matrix and $Q_{1}$ is a random vector, both with nonnegative entries. We impose conditions which guarantee the existence of a unique stationary distribution for $\{V_{n}\}$ and a Cramer-type condition for $\{M_{n}\}$. Under these assumptions, we characterize the distribution of the first passage time $T_{u}^{A}:=\inf\{n:V_{n}\in uA\}$, where $A$ is a general subset of $\mathbb{R}^{d}$, exhibiting that $T_{u}^{A}/u^{\alpha}$ converges to an exponential law for a certain $\alpha>0$. In the process, we revisit and refine classical estimates for $\mathbb{P}(V\in uA)$, where $V$ possesses the stationary law of $\{V_{n}\}$. Namely, for $A\subset\mathbb{R}^{d}$, we show that $\mathbb{P}(V\in uA)\sim C_{A}u^{-\alpha}$ as $u\to\infty$, providing, most importantly, a new characterization of the constant $C_{A}$. As a simple consequence of these estimates, we also obtain an expression for the extremal index of $\{|V_{n}|\}$. Finally, we describe the large exceedance paths via two conditioned limit theorems showing, roughly, that $\{V_{n}\}$ follows an exponentially-shifted Markov random walk, which we identify. We thereby generalize results from the theory of classical random walk to multivariate recursive sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call