Abstract

An exceptionally large excitonic effect on the van der Waals (vdW) interaction between two-dimensional semiconductors is unraveled using the Lifshitz theory in conjunction with the ab initio GW plus Bethe-Salpeter equation formalism. Upon consideration of the electron-hole interaction, the vdW energy between two atomistic layers separated by 10 000 angstroms can be larger by a ratio of ∼30%, which is an order of magnitude greater than that seen for semi-infinite silicon surfaces. The large influence of the short-range electron-hole interaction on the long-range effect of quantum fluctuations is rooted in the ultra-thin nature of two-dimensional semiconductors which results in not only large exciton binding energy but also amplified roles of low-frequency dielectric responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.