Abstract

AbstractThe 2019/2020 Australian wildfires emitted large quantities of atmospheric pollutant gases and aerosols. Using state‐of‐the‐art near‐real‐time satellite measurements of tropospheric composition, we present an analysis of several emitted trace gases and their long‐range transport, and compare to the previous (2018/2019) fire season. Observations of carbon monoxide (CO) show that fire emissions were so intense that the distinct Australian fire plume managed to circumnavigate the Southern Hemisphere (SH) within a few weeks, with eastward propagation over the South Pacific, South America, the South Atlantic, Africa, and the Indian Ocean. Elevated atmospheric methane levels were also detected in January 2020 fire plumes over the Pacific, defined using CO as a plume tracer, even though sampling was restricted spatially by aerosols and clouds. Observations also show significant enhancements of methanol (CH3OH) from the fires, where CH3OH:CO enhancement ratios increased within the aged plume downwind over the South Pacific indicating secondary in‐plume CH3OH formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.